English 全球十大网投正规信誉官网 旧版入口 人才招聘

论坛讲座

【系综合学术报告】2023年第5期 || On the convergence of inversive distance circle packings to the Riemann mapping

【系综合学术报告】

报告题目: On the convergence of inversive distance circle packings to the Riemann mapping

报 告 人:徐旭 副教授(武汉大学)

时间: 2023年4月5日16:00-17:00

地点:理科楼A404

报告摘要: Thurston's conjecture on the convergence of circle packings to the Riemann mapping is a constructive and geometric approach to the Riemann mapping theorem. The conjecture was solved by Rodin and Sullivan in 1987. In 2004, Bowers and Stephenson introduced the inversive distance circle packings as a natural generalization of Thurston's circle packings. They further conjectured that the discrete conformal maps induced by inversive distance circle packings converge to the Riemann mapping. In this talk, we will present a proof of Bowers-Stephenson's conjecture for Jordan domains. This is a joint work with Yuxiang Chen, Yanwen Luo and Siqi Zhang.

报告人简介:徐旭,武汉大学副教授,2006年本科毕业于华中科技大学,2011年在中国科学院数学研究所获得博士学位,2011年07月加入武汉大学数学与统计学院任教至今。研究领域为离散几何与微分几何,证明了三维流形上堆球度量的整体刚性、曲面上反演距离大于-1时反演距离堆圆度量的刚性、曲面上一般形式离散共形结构的刚性,还在预定组合曲率问题和组合曲率流相关问题上取得了系列进展,相关工作发表在J. Differential Geom.、 Adv. Math.、Trans. Amer. Math. Soc. 、J. Funct. Anal. 、Comm. Anal. Geom.、Int. Math. Res. Not. IMRN 、Calc. Var. Partial Differential Equations 、Math. Res. Lett.、Sci.China Math.等知名数学期刊上。

邀请人:陈大广