English 全球十大网投正规信誉官网 旧版入口 人才招聘

论坛讲座

【系综合学术报告】2024年第28期 || The dual Minkowski problem for unbounded closed convex sets

报告题目The dual Minkowski problem for unbounded closed convex sets

时间2024年6月28日(周五)下午4:00-5:00

地点:理科楼A304

报告人Professor Deping Ye (Memorial University of Newfoundland)

摘要: A central problem in convex geometry is to characterize the surface area measure of convex bodies. This is the well-known Minkowski problem which has found fundamental applications in analysis, PDEs, computer sciences. Similar questions can be asked for unbounded convex sets, which are closely related to log-concave functions and convex hypersurfaces. These unbounded convex sets play important roles in analysis, probability, algebraic geometry, singularity theory, etc. In this talk, I will talk about some recent progress on these problems with concentration on a special case: the dual Minkowski problem for unbounded closed convex sets. I will discuss how to set up this problem and explain our existence of solutions to this problem.

报告人简介: Professor Deping Ye,2000年本科毕业于山东大学,2000-2003年于浙江大学读研, 2009年博士毕业于美国Case Western Reserve University,现为加拿大Memorial University终身教授,并主持加拿大国家自然科学基金(NSERC) 项目。现任加拿大数学会旗舰杂志Canadian Journal of Mathematics 和 Canadian Mathematical Bulletin的副主编(Associate Editor), 并于2017年获得JMAA Ames奖。 长期从事凸几何分析,几何和泛函不等式, 随机矩阵,量子信息理论, 和统计学等领域的研究。 已在 Comm. Pure Appl. Math.,Adv. Math., J. Funct. Anal., Math. Ann., CVPDE等国际著名杂志(数学类, 数学物理类,和统计类) 上发表论文40篇。

邀请人:李海中,马辉,陈大广